Numbers

 

 

 

    ← Now available in paperback!

 

 

 

1  Diophantine Equations

 

1.1  The 450 Pound Problem (x3 + y3 = 6z3)

5

 

1.2  On  x2 + y3 = z6

7

 

1.3  On x3 – x + y3 – y = z3 – z

9

 

1.4  Sums of Consecutive Nth Powers Equal to Nth Power

14

 

1.5  Concordant Forms

21

 

1.6  N = (x2 + y2)/(1+xy) is a Square

26

 

1.7  If ab+1, ac+1, bc+1 are Squares

28

 

1.8  Sums of Three Cubes

38

 

1.9  Numbers Expressible As (a2 – 1)(b2 – 1)

40

 

1.10  Bi-Rational Substitutions Giving Squares

45

 

1.11  Miscellaneous Diophantine Equations

47

 

1.12  Triangles and Diophantine n-tuples

51

 

1.13  Diophantine n-tuples and their Duals

60

 

 

 

 

2  On Fermat

 

 

2.1  Generalized Little Theorem of Fermat

70

 

2.2  Barlow's Observation

71

 

2.3  Sums of Powers in Terms of Symmetric Functions

73

 

2.4  On Case 1 of Fermat's Last Theorem

78

 

2.5  Why z Is Not a Prime Power in zp = xp + yp

85

 

2.6  Fermat's Infinite Descent

87

 

2.7  Fermat's Last Theorem for Cubes

88

 

2.8  Kummer's Objection

94

 

2.9  Fermat's Last Theorem for Quadratic Integers

95

 

 

 

 

3  Problems

 

 

3.1  Diophantine Walk-a-thon

98

 

3.2  Geodesic Diophantine Boxes

99

 

3.3  The Two Ohm Problem

107

 

3.4  One In The Chamber

113

 

3.5  Square Triangular Numbers

115

 

3.6  No Equilateral Triangles on a Chess Board

117

 

3.7  Center of Gravity With Integer Coordinates

118

 

3.8  Smallest Quad With Integer Sides, Perp Diags

121

 

3.9  Tetrahedra with Edges in Arithmetic Progression

124

 

3.10  Double Equations from Triangles in Squares

131

 

3.11  Clouds, Shy Squares, and Diophantus

139

 

3.12  No Four Squares In Arithmetic Progression

141

 

 

 

 

4  Linear Recurring Sequences

 

 

4.1  Identities for Linear Recurring Sequences

150

 

4.2  Pseudoprimes For x2 – 4x – 9

151

 

4.3  Continued Fractions and Characteristic Recurrences

151

 

4.4  Recurrences and Pell Equations

153

 

4.5  Some Properties of the Lucas Sequence

156

 

4.6  Periods of Fibonacci Sequences Mod m

165

 

4.7  Summations and Recurrences

167

 

4.8  Perrin's Sequence

169

 

 

 

 

5  Sequences

 

 

5.1  Fibonacci, 1/89, And All That

174

 

5.2  Sequence Partitionable Into Powers of 2 or 3

176

 

5.3  Integer Sequences Related To π

178

 

5.4  Anti-Symmetric Arrays for Linear Recurrences

182

 

5.5  Sequences With No Arithmetic Progressions

185

 

 

 

 

6  Unit Fractions

 

 

6.1  Unit Fraction Partitions

187

 

6.2  The Greedy Algorithm for Unit Fractions

191

 

6.3  Odd Greedy Unit Fraction Expansions

197

 

6.4  Reverse Greed for Unit Fractions

201

 

6.5  Minimizing Denominators of Unit Fraction Expansions

204

 

6.6  Unit Fractions and Fibonacci

209

 

 

 

 

7  Magic Squares

 

 

7.1  Solving Magic Squares

211

 

7.2  Magic Square of Squares

216

 

7.3  Orthomagic Square of Squares

223

 

7.4  Automedian Triangles, Eigen Vectors, Magic Squares

226

 

7.5  Discordance Impedes Square Magic

232

 

7.6  No Progression of Four Rectangles On A Conic?

239

 

 

 

 

8  Digits

 

 

8.1  Sum-of-Digits Iterations

246

 

8.2  Geometric Dot Products and Digit Reversals

248

 

8.3  Reverse Digit Sums Leading to Palindromes

250

 

8.4  Self-Similar Reverse-Sum Sequences

256

 

8.5  On General Palindromic Numbers

265

 

8.6  Least Significant Non-Zero Digit of n!

269

 

8.7  The Factorial Number System

273

 

8.8  Catch of the Day (153 Fishes)

274

 

8.9  Infinitely Many Rhondas

275

 

8.10  Is e Normal?

277

 

8.11  In Defense of Base-Related Problems

285

 

 

 

 

9  Congruences

 

 

9.1  A Knot of Congruences

288

 

9.2  Limit Cycles of xy (mod x+y)

289

 

9.3  More Results on the Form xy (mod x+y)

293

 

9.4  Quadratic Congruences

297

 

9.5  Squares in Arithmetic Progression (mod p)

298

 

 

 

 

10  Primes

 

 

10.1  Reflective and Cyclic Sets of Primes

304

 

10.2  On the Density of Some Exceptional Primes

307

 

10.3  Highly Wilsonian Primes

311

 

10.4  Is This a Prime?

313

 

10.5  Legendre's Prime Number Conjecture

314

 

10.6  A Primality Criterion

316

 

10.7  Lucas's Primality Test With Factored N-1

317

 

 

 

 

11  Divisibility

 

 

11.1  Cyclic Divisibility

319

 

11.2  Cyclic and Reverse Divisibility

322

 

11.3  Product Divisible By Sum of Squares

328

 

11.4  Divisors of an n-term Geometric Series

331

 

11.5  Factoring Zeta

332

 

11.6  The Euclidean Algorithm

335

 

11.7  Irreducibility Criteria

337

 

11.8  Detecting Squares

340

 

11.9  Can n Divide !n ?

341

 

11.10  Powers of Primes Dividing Factorials

344

 

 

 

 

12  Arithmetic Functions

 

 

12.1  Sum of Divisors Equals a Power of 2

347

 

12.2  The Half-Totient Tree

348

 

12.3  Main Diagonals and Euler's Totient

352

 

12.4  The Distribution of Perfection

353

 

12.5  Differently Perfect

354

 

12.6  Coprime Partitions

356

 

12.7  Average of σ(n)/n

358

 

12.8  Congruences Involving the Totient Function

361

 

12.9  Sublime Numbers

365

 

 

 

 

13  Sum of prime factors

 

 

13.1  Definitions and Basic Propositions

368

 

13.2  Primes Related to Corollary 7.1

377

 

13.3  Iterated Functions

383

 

13.4  Higher-Order Solutions

386

 

13.5  Miscellaneous Related Results

396

 

13.6  Sum of Prime Factors of Linear Polynomials

403

 

13.7  Sum of Prime Factors of Quadratic Polynomials

406

 

 

 

 

14  Miscellaneous

 

 

14.1  Rounding Up To π

410

 

14.2  The Dartboard Sequence

414

 

14.3  Numeri Idonei

416

 

14.4  Evidence for Goldbach

419

 

14.5  Four Squares From Three Numbers

422

 

14.6  Anti-Carmichael Pairs

425

 

14.7  Zeisel Numbers

426

 

14.8  Coherent Arrays of Squares

427

 

14.9  Infinite Descent versus Induction

430

 

14.10  A Special Property of 151

436

 

14.11  Differences Between Powers

439

 

14.12  Exponential Partitions

445

 

14.13  Primitive Roots and Exponential Iterations

449

 

14.14  Quadratic Reciprocity – The Jewel of Arithmetic

456

 

 

 

 

15  Symmetric Pseudoprimes

 

 

15.1  Introduction

461

 

15.2  Basic Propositions

 

 

15.2.1  Nomenclature and Definitions

462

 

15.2.2  Basis Sequences

463

 

15.2.3  Elementary Symmetric Functions

465

 

15.2.4  Reversible Sequences

467

 

15.2.5  Coefficient Sequences

469

 

15.2.6  Relation Between Basis/Symmetric Functions

470

 

15.2.7  Primes Types Relative to f(x)

472

 

15.2.8  Recurrences Modulo Composites

475

 

15.3  Pseudoprimes Relative to Selected Polynomials

 

 

15.3.1  Linear

476

 

15.3.2  Quadratic

477

 

15.3.3  Cubic

482

 

15.3.4  Quartic

485

 

15.3.5  Quintic

487

 

15.4  Congruence Conditions on Linear Recurring Sequences

 

 

15.4.1  Second Order

492

 

15.4.2  Third Order

493

 

15.4.3  Fourth Order

495

 

 

 

 

Appendix A:  Sums of Prime Factors

505

 

Appendix B:  Symmetric Pseudoprimes

519

 

Appendix C:  Concordant Forms

526

 

Appendix D:  Table of Geodesic Boxes

529

 

Appendix E:  Odd-Greedy Expansion of 5/139

536